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1. Introduction

Hitting probability is an active field of probability potential theory. Generally speaking, for an Rd-
valued random field X = {X(x), x ∈Rm}, its hitting probability concerns the lower and upper bounds 
of P {X(I) ∩ A �= ∅}, where I ⊂Rm is a fixed compact set with positive Lebesgue measure, and A ⊂Rd

is a Borel set. In this setting, a Borel set A ⊂Rd is called polar for X if P {X(I) ∩ A �= ∅} = 0; otherwise, 
A is called nonpolar. When X is the solution of a system of SPDEs, the hitting probability of X has 
been studied extensively (see e.g., [6–12,18,22–24]), which is usually bounded by the Bessel–Riesz 
capacity and Hausdorff measure of A (see [19, Appendix C] or subsection 2.3 for the definitions), 
namely,

c Capd−Q (A) ≤ P {X(I) ∩ A �= ∅} ≤ CHd−Q (A), (1)

for some Q > 0 and c, C > 0. It is well known that the critical dimension Q (see e.g., [9,13]) is an 
important parameter that is highly related to the polarity of a Borel set A. When X is approximated by 
a perturbation, particularly by a numerical solution provided that X is the exact solution of a system 
of SPDEs, a natural question is what are the influence of the perturbation on critical dimensions of 
hitting probabilities. To the best of our knowledge, there is no result on this problem.

In this paper, we investigate the influence on hitting probabilities of numerical discretizations for 
the following system of linear stochastic parabolic equations⎧⎪⎪⎨⎪⎪⎩

∂t u j(t, x) − ∂xxu j(t, x) = Ẇ j(t, x),

u j(t,0) = u j(t,1) = 0, t ≥ 0,

u j(0, x) = 0, x ∈ [0,1],
(2)

for j = 1, . . . , d, where u(t, x) = (u1(t, x), . . . , uN(t, x)), and {W k}k=1,...,d are d independent Brownian 
sheets on some filtered probability space (�, F , {Ft }t≥0, P ). The hitting probabilities of the exact 
solution for system (2) are well established by [1,7], which suggest that the critical dimensions in 
time and space directions are respectively 4 and 2, that is for any bounded Borel set A in Rd ,

c Capd−4(A) ≤ P {u([T0, T ] × {x}) ∩ A �= ∅} ≤ CHd−4(A),

c Capd−2(A) ≤ P {u({t} × [ε,1 − ε]) ∩ A �= ∅} ≤ CHd−2(A).

Here and after, T0 ∈ (0, T ), ε ∈ (0, 12 ) are fixed numbers, and c, C are generic positive constants that 
may differ from one place to another. Numerical approximations of stochastic parabolic equations 
have been studied extensively, which converge to exact solutions in some sense (see e.g., [3,4,17]), 
but may reflect new and interesting properties, see [5] for the effect of the length of the time-steps 
on the quadratic and quartic variations, see [2] for the influence of regularity of the test function 
on weak convergence of numerical solutions. The main result of this paper reveals that the critical 
dimensions of both temporal and spatial semi-discretizations considered in Section 2 are halves of 
those of the exact solution. This indicates that there exist some Borel sets A such that the probability 
of the event that the paths of the numerical solution hit A cannot converge to that of the exact 
solution. This property may be linked to the regularity of trajectories (see e.g. [5]).

For the spatial semi-discretization of system (2), we introduce the finite difference method (FDM) 
and the spectral Galerkin method (SGM), and formulate the corresponding numerical solutions 
u j,N (t, x) as stochastic integrals associated with discrete Green functions. For FDM, the associated 
numerical solution {u j,N (t, x); x ∈ (xi, xi+1]} is the linear interpolation of u j,N (t, xi) and u j,N (t, xi+1). 
We find that for any fixed space grid point xi = i/N ∈ [ε, 1 −ε], U N(t, xi) =

(
u1,N(t, xi), . . . , ud,N(t, xi)

)
given by FDM is Hölder continuous with respect to t ∈ [T0, T ] with the optimal Hölder exponent 1

2 , 
which is crucial to conclude that the critical dimension associated to the time direction of FDM is 2. 
More precisely, for any bounded Borel set A in Rd ,

c Capd−2(A) ≤ P
{

U N([T0, T ] × {xi}) ∩ A �= ∅
}

≤ CHd−2(A),
2
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which can also be extended to the case of SGM. By noticing that U N (t, x) based on SGM is still a two-
variable random field indexed by (t, x) ∈ [0, ∞) × [0, 1], we further investigate its critical dimension 
in space direction. The main difficulty lies in establishing lower bounds for the Hölder continuity and 
conditional variance in terms of the associated canonical metric |x − y|, which is overcome by refined 
estimates of the discrete Green function. These yield that the critical dimension associated to the 
space direction of SGM is 1, i.e., for any bounded Borel set A in Rd ,

c Capd−1(A) ≤ P
{

U N({t} × [ε,1 − ε]) ∩ A �= ∅
}

≤ CHd−1(A).

This property may not be extended to the numerical approximation given by FDM whose trajecto-
ries [0, 1] � x �→ U N (t, x) are piecewise linear, since it is a challenge to obtain the lower bound of 
conditional variance in terms of the associated canonical metric |x − y|.

For the temporal semi-discretization of system (2), we apply the exponential Euler method (EEM) 
with time stepsize 1/M , M ∈ N+ . For any fixed time grid point t j = j

M ∈ [T0, T ], the numerical so-
lution U M(t j, ·) of EEM is smoother than the exact solution since the temporal discretization avoids 
the treatment of the singularity of the Green function Gt(x, y) near t = 0. Actually, making use of 
this property, we show that U M(t j, x) is Lipschitz continuous with respect to x ∈ [ε, 1 − ε], and 1 is 
exactly the optimal Hölder exponent. As a consequence, the critical dimension associated to the space 
direction of EEM is also 1:

c Capd−1(A) ≤ P
{

U M({t j} × [ε,1 − ε]) ∩ A �= ∅}≤ CHd−1(A),

for any bounded Borel set A in Rd . For the continuous EEM numerical solution U M (t, x), we can 
only obtain the upper bound of hitting probabilities in time direction in terms of Hausdorff measure 
since U M(t, x) is smoother in every subinterval (ti, ti+1) than in grid points. It is worth mentioning 
that different from the infinite dimensional case, the continuous EEM numerical solution for the sys-
tem of finite dimensional Ornstein–Uhlenbeck equations preserves the critical dimension of the exact 
solution of the original system.

The rest of this paper is organized as follows. Section 2 states some preliminaries, including the 
model, numerical discretizations, and hitting probabilities of the exact solution. Our main results on 
the upper and lower bounds for hitting probabilities of semi-discretizations are presented in sub-
section 2.4. Detailed proofs of main results are postponed to Section 3. Section 4 compares the 
continuous version of the time discretization for system (2) and that of a system of finite dimen-
sional Ornstein–Uhlenbeck equations.

2. Preliminaries and main results

In this section, we introduce the model and its numerical discretizations, and present main results 
on hitting probabilities of numerical discretizations.

2.1. The model

Consider the following linear stochastic parabolic equation:⎧⎪⎨⎪⎩
∂t v(t, x) − ∂xx v(t, x) = Ẇ (t, x),

v(t,0) = v(t,1) = 0, t ≥ 0,

v(0, x) = 0, x ∈ [0,1],
(3)

where W is a Brownian sheet on [0, ∞) × [0, 1]. Then

v(t, x) =
t∫

0

1∫
0

Gt−r(x, z)W (dr,dz), (t, x) ∈ [0,∞) × [0,1],
3
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and the components u j, j = 1, . . . , d, in (2) are independent copies of v . Here, the Green function G
has the expression

Gt(x, y) =
∞∑

k=1

e−π2k2tek(x)ek(y) (4)

with ek(x) = √
2 sin(kπx), k ≥ 1. We recall another equivalent formulation

Gt(x, y) = 1√
4πt

+∞∑
n=−∞

(
e− (x−y−2n)2

4t − e− (x+y−2n)2

4t

)
.

Let Pt(x, y) = 1√
4πt

e− (x−y)2

4t be the heat kernel on R. We remark that

Gt(x, y) ≤ Pt(x, y), (5)

and for every 0 < ε < 1
2 ,

Gt(x, y) ≥ (1 − 2e− ε2
t )Pt(x, y), x, y ∈ [ε,1 − ε] (6)

(see e.g. [16, Lemmas 3.1 and 3.3] for their proofs). We also need the following lower bound of the 
Green function, whose proof is postponed to Appendix A.1.

Lemma 2.1. For any ε ∈ (0, 12 ), there exists C := C(ε, T ) > 0 such that

Gt(x, x) ≥ Ct− 1
2 , ∀ x ∈ [ε,1 − ε], t ∈ (0, T ].

2.2. Numerical methods

In this part, we introduce some spatial and temporal discretizations for the linear stochastic 
parabolic system (2).

2.2.1. Spatial discretizations
For spatial discretizations of (2), we introduce the finite difference method and the spectral 

Galerkin method. Their numerical solutions can be written as

v N(t, x) =
t∫

0

1∫
0

G N
t−r(x, z)W (dr,dz), (t, x) ∈ (0,∞) × [0,1], (7)

where G N is given in (10) for FDM and in (12) for SGM. The associated numerical solution to (2) is 
denoted by

U N(t, x) = (u1,N(t, x), . . . , ud,N (t, x)
)
, (8)

where u j,N (t, x) are generated via replacing W in (7) by W j, j = 1, . . . , d. For N ≥ 2, denote ZN :=
{1, . . . , N − 1}.

Finite difference method: Using the central difference, the finite difference method of (3) is proposed 
in [17]. For every integer N ≥ 2, the associated numerical solution v N (t, x) is constructed as follows. 
Let {v N(t, k

N )}k∈ZN solve

dv N(t,
k

N
) = N2

(
v N(t,

k + 1

N
) − 2v N(t,

k

N
) + v N(t,

k − 1

N
)

)
dt

+ Nd

(
W (t,

k + 1

N
) − W (t,

k

N
)

)
,

4
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v N(0,
k

N
) = 0, v N(t,0) = v N(t,1) = 0. (9)

For x ∈ [ k
N , k+1

N ), v N(t, x) is defined by the polygonal approximation

v N(t, x) := v N(t,
k

N
) + (Nx − k)

(
v N(t,

k + 1

N
) − v N(t,

k

N
)

)
.

By introducing v N
k (t) := v N (t, k

N ) and B N
k (t) := √

N
(

W (t, k+1
N ) − W (t, k

N )
)

, we rewrite (9) as

dv N
k (t) = N2

N−1∑
i=1

Dki v N
i (t)dt + √

NdB N
k (t),

v N
k (0) = 0, k = 1, . . . , N − 1,

where D = (Dki) is a square matrix of size N − 1 with Dkk = −2, Dki = 1 for |k − i| = 1, and Dki = 0
for |k − i| > 1. The vectors f1, . . . f N−1 defined by f j = ( f j(1), . . . , f j(N − 1))� with

f j(k) =
√

2

N
sin

(
j

k

N
π

)
, k = 1, . . . , N − 1

form an orthonormal basis of RN−1, which are also eigenvectors of N2 D corresponding to the eigen-

values {−4N2 sin2
(

j
2N π

)
, j = 1, . . . , N − 1}. By the variation of constant formula, the solution of (9)

is

v N(t, xi) =
t∫

0

1∫
0

N−1∑
k=1

exp

(
−4N2 sin2

(
k

2N
π

)
(t − r)

)
ek(xi)ek(κN(z))W (dr,dz),

where xi := i
N , t > 0, and κN (z) := [Nz]

N with [·] being the floor function (see e.g. [17, formula (2.7)]

with f ≡ 0 and σ ≡ 1). We remark that −k2π2 ≤ −4N2 sin2
(

k
2N π

)
≤ −4k2, ∀ k ∈ ZN and N ≥ 2. 

By the polygonal interpolation, we obtain the continuous numerical solution (7) of FDM, where the 
associated discrete Green function is

G N
t (x, y) =

N−1∑
k=1

exp

(
−4N2 sin2

(
k

2N
π

)
t

)
eN

k (x)ek(κN(y)) (10)

with

eN
k (x) := ek (κN(x)) + N(x − κN(x))

[
ek

(
κN(x) + 1

N

)
− ek (κN(x))

]
, x ∈ [0,1]. (11)

Spectral Galerkin method: The spectral Galerkin approximation for (3) is studied in [20] by rewriting 
(3) as an infinite dimensional stochastic evolution equation

dv(t) = �v(t)dt + dVt, v(0) = 0,

where � is the Dirichlet Laplacian, and Vt = ∑∞
k=1 βk(t)ek is some cylindrical Wiener process 

on H := L2(0, 1) with {βk(t), t ≥ 0}k≥1 being a sequence of independent Brownian motions on 
(�, F , {Ft}t≥0, P ). Define the finite dimensional subspace H N := span{ek, k ∈ ZN } of H , and the 
projection operator P N : H → H N by P Nh = ∑N−1

k=1 〈ek, h〉H ek, h ∈ H . Then by [20, subsection 3.1], 
the spectral Galerkin approximation for (3) in H N is to find an {Ft}-adapted H N -valued process 
v N = {v N

t , t > 0} such that

dv N
t = P N�v N

t dt +
N−1∑

ekdβk(t), v N
0 = 0,
k=1

5
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which is equivalent to a system of stochastic differential equations:

d〈v N
t , ek〉H = −k2π2〈v N

t , ek〉H dt + dβk(t), 〈v N
0 , ek〉H = 0, k ∈ZN .

Noticing 
∑N−1

k=1 〈v N
t , ek〉H ek(x) = v N(t, x) in distribution sense, one can verify that

v N(t, x) =
t∫

0

1∫
0

G N
t−r(x, z)W (dr,dz), (t, x) ∈ (0,∞) × [0,1],

where the discrete heat kernel associated to SGM is

G N
t (x, y) =

N−1∑
k=1

exp(−k2π2t)ek(x)ek(y). (12)

2.2.2. Temporal discretization
Introducing a time stepsize δt = 1/M , M ∈ N+ , the numerical solution of the exponential Euler 

method for (3) is given by v M(t0, x) = 0,

v M(ti, x) =
1∫

0

Gδt(x, z)v M(ti−1, z)dz +
ti∫

ti−1

1∫
0

Gδt(x, z)W (dr,dz),

where ti = iδt , i ∈N+ . Hence, for i ∈N+ ,

v M(ti, x) =
ti∫

0

1∫
0

Gti−[ r
δt ]δt(x, z)W (dr,dz). (13)

The associated numerical solution of system (2) is denoted by

U M(ti, x) = (u1
M(ti, x), . . . , ud

M(ti, x)
)
, i ∈N+, (14)

where u j
M(ti, x) is generated by replacing W in (13) by W j for j ∈ {1, . . . , d}.

2.3. Hitting probability

Given two random variables X and Y , we denote VarX := E|X − EX |2, Cov(X, Y ) := E[(X −
EX)(Y −EY )], and Corr(X, Y ) := Cov(X,Y )√

VarX
√

VarY
. For any Borel set F ⊂Rd , define P(F ) to be the set of 

all probability measures with compact support in F . For μ ∈ P(Rd) and β ∈R, let Iβ(μ) denote the 
β-dimensional energy of μ, i.e.,

Iβ(μ) :=
∫∫

Kβ(‖x − y‖)μ(dx)μ(dy),

where ‖x‖ denotes the Euclidean norm of x ∈Rd , and

Kβ(r) :=
⎧⎨⎩ r−β, if β > 0,

log
( e

r∧1

)
, if β = 0,

1, if β < 0.

For any β ∈ R and a Borel set F ⊂ Rd , Capβ(F ) denotes the β-dimensional Bessel–Riesz capacity of 
F , that is,

Capβ(F ) :=
[

inf
μ∈P(F )

Iβ(μ)

]−1

,

6
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where 1/∞ := 0. Given β ≥ 0, the β-dimensional Hausdorff measure of F is defined by

Hβ(F ) = lim
ε→0+ inf

{ ∞∑
i=1

(2ri)
β : F ⊂

∞⋃
i=1

B (xi, ri) , sup
i≥1

ri ≤ ε

}
,

where B(x, r) denotes the open Euclidean ball of radius r > 0 centered at x ∈Rd . When β < 0, Hβ(F )

is defined to be infinite. We refer to [19, Appendix C] for more details about the Bessel–Riesz capacity 
and the Hausdorff measure.

Based on the Bessel–Riesz capacity and Hausdorff measure, we present the lower and upper 
bounds for hitting probabilities of the exact solution of (2), which is shown in [7, Theorem 4.6 & 
Remark 4.7] (see also [1, Section 4]).

Proposition 2.2. [7] Let u(t, x) = (u1(t, x), . . . , ud(t, x)) be the exact solution of (2). Fix L > 0 and 0 < ε � 1. 
Then there exist Ci = Ci(T0, T , d, ε, L), i = 1, . . . , 6, such that for any Borel set A ⊂ [−L, L]d,

C1 Capd−6(A) ≤ P {u([T0, T ] × [ε,1 − ε]) ∩ A �= ∅} ≤ C2Hd−6(A),

C3 Capd−2(A) ≤ P {u({t} × [ε,1 − ε]) ∩ A �= ∅} ≤ C4Hd−2(A),

C5 Capd−4(A) ≤ P {u([T0, T ] × {x}) ∩ A �= ∅} ≤ C6Hd−4(A),

where t ∈ [T0, T ] and x ∈ [ε, 1 − ε].

2.4. Main results

The inequality (1) gives lots of information about hitting probabilities for the case of d �= Q . In 
particular, if a random field X satisfies (1) with the critical dimension Q , then points are polar for X
when d > Q , and are nonpolar for X when d < Q . In this part, we state our main results of this paper 
in Theorems 2.3, 2.4, and 2.5 for FDM, SGM, and EEM, respectively, which can be summarized as fol-
lows: for a fixed stepsize, the critical dimensions of both temporal and spatial semi-discretizations are 
halves of those of the exact solution. Since the stepsize is specified in advance, the generic constants 
Ci in Theorems 2.3, 2.4, and 2.5 are allowed to depend on the partition parameter N or M . We first 
give the hitting probabilities of the spatial semi-discretization of FDM in time direction.

Theorem 2.3. Let 0 < ε < 1
2 and U N (t, x) defined in (8) be the numerical solution of FDM for system (2). Fix 

L > 0. Then for sufficiently large N, there exist Ci = Ci(N, L, ε, T0, T , d), i = 1, 2, such that for any Borel set 
A ⊂ [−L, L]d,

C1 Capd−2(A) ≤ P
{

U N([T0, T ] × {x}) ∩ A �= ∅
}

≤ C2Hd−2(A),

where x ∈ [ε, 1 − ε].

Theorem 2.3 can be extended to the case of SGM. In addition, the numerical solution based on 
SGM is still a continuous Gaussian random field indexed by (t, x) ∈ [0, ∞) × [0, 1], hence we further 
investigate its hitting probabilities in space direction.

Theorem 2.4. Let 0 < ε < 1
2 and U N(t, x) defined in (8) be the numerical solution of SGM for system (2). Fix 

L > 0. Then for sufficiently large N, there exist Ci = Ci(N, L, ε, T0, T , d), i = 1, 2, 3, 4, such that for all Borel 
set A ⊂ [−L, L]d,

C1 Capd−1(A) ≤ P
{

U N({t} × [ε,1 − ε]) ∩ A �= ∅
}

≤ C2Hd−1(A), (15)

C3 Capd−2(A) ≤ P
{

U N([T0, T ] × {x}) ∩ A �= ∅
}

≤ C4Hd−2(A), (16)

where x ∈ [ε, 1 − ε] and t ∈ [T0, T ].
7
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In (15) and (16), the constants Ci depend on the partition parameter N . Consequently, when letting 
N tend to ∞, we cannot obtain

C1 Capd−1(A) ≤ P
{

U∞({t} × [ε,1 − ε]) ∩ A �= ∅}≤ C2Hd−1(A),

C3 Capd−2(A) ≤ P
{

U∞([T0, T ] × {x}) ∩ A �= ∅}≤ C4Hd−2(A),

where U∞ := lim
N→∞ U N in some sense is a formal notation. This reveals the differences between the 

cases N = ∞ and N < ∞. A similar property also holds for the temporal semi-discretization. For the 
temporal semi-discretization based on EEM, we study its hitting probabilities in space direction.

Theorem 2.5. Let 0 < ε < 1
2 and U M(t, x) defined in (14) be the numerical solution of EEM for system (2). Fix 

L > 0. Then for M ≥ 3, there exist Ci = Ci(M, L, ε, T0, T , d), i = 1, 2, such that for any Borel set A ⊂ [−L, L]d,

C1 Capd−1(A) ≤ P {U M({t} × [ε,1 − ε]) ∩ A �= ∅} ≤ C2Hd−1(A),

where t ∈ { 1
M , 2

M , . . . , } ∩ [T0, T ].

Theorems 2.3, 2.4 and 2.5 reveal that for some Borel sets A, the probability of the event that 
paths of the numerical solution hit A cannot converge to that of the exact solution. More precisely, 
by Frostman’s theorem ([19, Appendix C, Theorem 2.2.1]), for any compact set A ⊂Rd ,

dimH(A) = sup {s > 0 : Hs(A) = ∞} = inf {s > 0 : Hs(A) = 0}
= sup

{
s > 0 : Caps(A) > 0

}= inf
{

s > 0 : Caps(A) = 0
}
,

where dimH(A) is the Hausdorff dimension of A. Therefore,

Capd−Q exact
(A) > 0, ∀ d < dimH(A) + Q exact,

and

Hd− 1
2 Q exact

(A) = 0, ∀ d > dimH(A) + 1

2
Q exact.

Let a random field X satisfy (1) with Q = Q exact, and a sequence of random fields {Xn}n≥n0 with 
some n0 ∈ N satisfy (1) with Q = 1

2 Q exact. Then for any bounded Borel set A ⊂ Rd with dimH(A) ∈
(d − Q exact, d − 1

2 Q exact), it holds that

P
{

Xn(I) ∩ A �= ∅}≤ CHd− 1
2 Q exact

(A) = 0, ∀ n ≥ n0,

P {X(I) ∩ A �= ∅} ≥ C Capd−Q exact
(A) > 0,

which indicates that

lim
n→∞P

{
Xn(I) ∩ A �= ∅}= 0 < P {X(I) ∩ A �= ∅} . (17)

Proposition 2.2 shows that for the exact solution u of system (2), the critical dimension Q t
exact = 4 in 

time direction and the critical dimension Q x
exact = 2 in space direction. Taking X = u and Xn = Un (or 

Xn = Un) in (17), the following results follow from Theorems 2.3, 2.4, and 2.5.

Corollary 2.6. For any bounded Borel set A ⊂Rd with dimH(A) ∈ (d − 4, d − 2),

lim
N→∞P

{
U N([T0, T ] × {x}) ∩ A �= ∅

}
= 0 < P {u([T0, T ] × {x}) ∩ A �= ∅} ,

and for any bounded Borel set A ⊂Rd with dimH(A) ∈ (d − 2, d − 1),

lim P {U M({t} × [ε,1 − ε]) ∩ A �= ∅} = 0 < P {u({t} × [ε,1 − ε]) ∩ A �= ∅} .

M→∞

8
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For example, for d = 3 and each y ∈R3, dimH({y}) = 0 (see e.g., [15, Example 2.2]), and hence 3 =
d ∈ (dimH({y}) +2, dimH({y}) +4) = (2, 4). Thus, for fixed x ∈ [ε, 1 −ε], all points y ∈R3 are nonpolar 
for u(·, x) but polar for the spatial semi-discretization U N (·, x). From Corollary 2.6, we conclude that 
there exist some Borel sets A such that the probability of the event that the paths of the numerical 
solution hit A cannot converge to that of the exact solution when the stepsizes vanish.

3. Proofs of main results

In this section, we present the proofs of main results in subsection 2.4. We first present in Propo-
sition 3.1 the criterion about hitting probabilities of a general Gaussian random field, which is a 
reformulation of [1, Theorem 2.1] and [9, Theorems 2.1 & 2.6], and will be applied to prove the hit-
ting probabilities for the numerical discretizations. For a set I ⊂ Rm , we denote Iδ := ∪y∈I {x ∈ Rm :
‖x − y‖ ≤ δ} the δ-neighborhood of I .

Proposition 3.1. Let I = [a, b] := ∏m
j=1[a j, b j] (a j < b j) be an interval or a rectangle in Rm and X ={

X(x), x ∈Rm
}

be an Rd-valued Gaussian random field with coordinate processes X1, . . . , Xd being indepen-
dent copies of a real-valued, centered Gaussian random field X0 = {X0(x), x ∈Rm

}
. Assume that the following 

conditions (C0), (C1) and (C2) (or (C2)′) hold:

(C0) for some δ > 0, E|X0(x)|2 ≥ c1 holds for any x ∈ Iδ ;
(C1) there exists H = (H1, . . . , Hm) ∈ (0, 1]m such that for all x, y ∈ I ,

c2

m∑
j=1

∣∣x j − y j
∣∣2H j ≤E |X0(x) − X0(y)|2 ≤ c3

m∑
j=1

∣∣x j − y j
∣∣2H j ;

(C2) H ∈ (0, 1)m and there exist c4, η > 0 such that for any x, y ∈ I ,∣∣∣E|X0(x)|2 −E|X0(y)|2
∣∣∣≤ c4

m∑
j=1

∣∣x j − y j
∣∣H j(1+η)

, (18)

Corr(X0(x), X0(y)) < 1, ∀ x �= y; (19)

(C2)′ H = (1, . . . , 1) and there exists positive constant c4 such that for all x, y ∈ I ,

Var (X0(x)|X0(y)) ≥ c4 ‖x − y‖2 .

Here, ci, i = 1, 2, 3, 4, are independent of x, y, and Var (X0(x)|X0(y)) denotes the conditional variance 
of X0(x) given X0(y). Then for fixed L > 0, there exist positive constants c5, c6 such that for every Borel set 
A ⊂ [−L, L]d,

c5 Capd−Q (A) ≤ P {X(I) ∩ A �= ∅} ≤ c6Hd−Q (A), (20)

where Q :=∑m
j=1 1/H j .

For the sake of completeness, we give the proof of Proposition 3.1 in Appendix A.2. We remark 
that the right side of (C1) implies that there exists c7 > 0 such that

E|X0(x)|2 ≤ 2c3

m∑
j=1

∣∣x j
∣∣2H j + 2E|X0(0)|2 ≤ c7, ∀ x ∈ I. (21)

We would like to mention that for Gaussian random fields, (C0) and the upper bound in (C1) suffice 
to derive the upper bound in (20), and the lower bounds in (C1) and (C2) (or (C2)′) are used to 
deduce the lower bound in (20). For the case of H = (1, . . . , 1) ∈ Rm , the following facts are helpful 
for estimating the conditional variance in (C2)′:
9
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If (Y , Z) is a centered Gaussian vector, then

Var(Y |Z) =

(
E|Y − Z |2 −

(√
E|Y |2 −√E|Z |2

)2
)((√

E|Y |2 +√E|Z |2
)2 −E|Y − Z |2

)
4E|Z |2 .

(22)

By [14, Proposition 3.13], (22) has another equivalent formulation:

Var (Y |Z) = Var Y Var Z − Cov(Y , Z)2

Var Z
. (23)

3.1. Proof of Theorem 2.3

Based on Proposition 3.1, we only need to prove that the numerical solution v N of the spatial dis-
cretization of FDM satisfies (C0)-(C2). The following lemma is instrumental for deriving the optimal 
Hölder continuity of v N (t, x) with respect to x ∈ [ε, 1 − ε].

Lemma 3.2. Let 0 < ε < 1
2 and N > 14. Then for any x, y ∈ [ε, 1 − ε],

|e1(x) − e1(y)|2 + |e2(x) − e2(y)|2 ≥ c(ε)|x − y|2, (24)

|eN
1 (x) − eN

1 (y)|2 + |eN
2 (x) − eN

2 (y)|2 ≥ c(ε, N)|x − y|2, (25)

where c(ε) and c(ε, N) are positive constants.

Proof. Without loss of generality, we always assume ε ≤ x < y ≤ 1 − ε .
The proof of (24) is divided into two cases.
Case 1: x + y ∈ [2ε, 1 − ε] ∪ [1 + ε, 2 − 2ε]. Notice that 2ε − 1 ≤ x − y < 0. Therefore,

| sin(πx) − sin(π y)|2 = 4 cos2
(

π(x + y)

2

)
sin2

(
π(x − y)

2

)
≥ 4 sin2

(πε

2

)
|x − y|2,

because 2
π ≤ sin θ

θ
≤ 1 holds for all θ ∈ [−π

2 , 0).
Case 2: x + y ∈ [1 −ε, 1 +ε]. In this case, we have | cos (π(x + y)) | ≥ cos(πε) and ε −1 ≤ x − y < 0. 

This implies that | sin (π(x − y)) | ≥ sin(π(1−ε))
π(1−ε)

π |x − y|, and hence

| sin(2πx) − sin(2π y)|2 = 4 cos2 (π(x + y)) sin2 (π(x − y))

≥ 4 cos2(πε)
sin2(π(1 − ε))

(1 − ε)2
|x − y|2.

Combining Case 1 and Case 2, the proof of (24) is completed.
We now turn to the proof of (25). Recall that eN

i , i = 1, 2, defined in (11) is the linear interpolation 
of points {ei( j/N), j ∈ZN+1 ∪ {0}}. We split the interval [ε, 1 − ε] into[

ε,
1

2
− 1

N

]
∪
(

1

2
− 1

N
,

1

2
+ 1

N

)
∪
[

1

2
+ 1

N
,1 − ε

]
=: A1 ∪ A2 ∪ A3.

For N ≥ 10, A2 ⊂ [ 1
4 + 3

2N , 34 − 3
2N ]. Without loss of generality, we also assume N ≥ 2

1−2ε (when 
N < 2

1−2ε , A3 = A1 = ∅, thus it suffices to consider the case of x, y ∈ A2).
If x, y ∈ [xl−1, xl] for some l ∈ZN+1, then

|eN
i (x) − eN

i (y)| = N|x − y|
∣∣∣∣ei

(
l − 1

N

)
− ei

(
l

N

)∣∣∣∣ , i = 1,2,

which along with (24) implies that
10



C. Chen, J. Hong and D. Sheng Journal of Complexity 70 (2022) 101634
|eN
1 (x) − eN

1 (y)| + |eN
2 (x) − eN

2 (y)| ≥ c(ε)|x − y|.
Hence, it remains to prove the case of x ∈ [xl, xl+1) and y ∈ (xm, xm+1] for some l < m, i.e., xl is the 
largest grid point smaller than or equal to x and xm+1 is the smallest grid point greater than or equal 
to y.

(a) x, y ∈ A1. Notice that e1(x) = √
2 sin(πx) is monotone increasing on [0, 12 − 1

2N ] with derivative 
e′

1(x) = √
2π cos(πx) ∈ [√2π sin

(
π

2N

)
, 
√

2π ]. By the mean value theorem, we have for any z1, z2 ∈
[0, 12 − 1

2N ] with z1 < z2

e1(z2) − e1(z1) ≥ √
2π sin

( π

2N

)
(z2 − z1). (26)

The monotone increasing property of e1 on [0, 12 ] implies that eN
1 is also monotone increasing 

on [0, 12 − 1
N ]. Hence, for 0 ≤ xl ≤ x < xl+1 ≤ xm < y ≤ xm+1 ≤ 1

2 , it holds that eN
1 (y) ≥ eN

1 (xm) ≥
eN

1 (xl+1) ≥ eN
1 (x), and thus

|eN
1 (x) − eN

1 (y)| = eN
1 (y) − eN

1 (x)

=
(

eN
1 (xl+1) − eN

1 (x)
)

+
(

eN
1 (xm) − eN

1 (xl+1)
)

+
(

eN
1 (y) − eN

1 (xm)
)

= N(xl+1 − x)
(

e1(xl+1) − e1(xl)
)

+
(

e1(xm) − e1(xl+1)
)

+ N(y − xm)
(

e1(xm+1) − e1(xm)
)
,

where in the last step, we have used (11), x ∈ [xl, xl+1), and y ∈ (xm, xm+1]. If N is odd, then the 
relations y ≤ 1

2 − 1
N < 1

2 − 1
2N = N−1

2N and y ∈ (xm, xm+1] imply xm+1 ≤ N−1
2N = 1

2 − 1
2N . If N is even, then 

y ≤ 1
2 − 1

N = N
2 −1

N implies xm+1 ≤ 1
2 − 1

N . Thus, we have 0 ≤ xl ≤ x < xl+1 ≤ xm < y ≤ xm+1 ≤ 1
2 − 1

2N , 
which together with (26) gives

|eN
1 (x) − eN

1 (y)| = N(xl+1 − x)
(

e1(xl+1) − e1(xl)
)

+
(

e1(xm) − e1(xl+1)
)

+ N(y − xm)
(

e1(xm+1) − e1(xm)
)

≥ (xl+1 − x)
√

2π sin
( π

2N

)
+ √

2π sin
( π

2N

)
(xm − xl+1)

+ (y − xm)
√

2π sin
( π

2N

)
= √

2π sin
( π

2N

)
|y − x|.

(b) x, y ∈ [ 1
4 + 3

2N , 34 − 3
2N ] or x, y ∈ A3. Notice that e1(x) = √

2 sin(πx) is monotone decreas-

ing on [ 1
2 + 1

2N , 1] with derivative e′
1(x) = √

2π cos(πx) ∈ [−√
2π, −√

2π sin
(

π
2N

)], and e2(x) =√
2 sin(2πx) is monotone decreasing on [ 1

4 + 1
2N , 34 − 1

2N ] with derivative e′
2(x) = 2

√
2π cos(2πx) ∈

[−2
√

2π, −2
√

2π sin
(
π
N

)]. Therefore,

|e1(z1) − e1(z2)| ≥
√

2π sin
( π

2N

)
|z1 − z2|, ∀ z1, z2 ∈

[
1

2
+ 1

2N
,1

]
, (27)

|e2(z1) − e2(z2)| ≥2
√

2π sin
(π

N

)
|z1 − z2|, ∀ z1, z2 ∈

[
1

4
+ 1

2N
,

3

4
− 1

2N

]
. (28)

If x, y ∈ [ 1
4 + 3

2N , 34 − 3
2N ], then 1

4 + 1
2N ≤ xl ≤ x < xl+1 ≤ xm < y ≤ xm+1 ≤ 3

4 − 1
2N . Thus, similar as 

in (a), the monotone decreasing property of eN
2 on [ 1

4 + 3
2N , 34 − 3

2N ] and (28) produce
11
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|eN
2 (x) − eN

2 (y)| = |eN
2 (x) − eN

2 (xl+1)| + |eN
2 (xl+1) − eN

2 (xm)| + |eN
2 (xm) − eN

2 (y)|
≥ 2

√
2π sin

(π

N

)
(xl+1 − x) + 2

√
2π sin

(π

N

)
(xm − xl+1)

+ 2
√

2π sin
(π

N

)
(y − xm)

= 2
√

2π sin
(π

N

)
|x − y|.

If x, y ∈ A3, then it follows from xl ≤ x < xl+1 that for odd N , xl ≥ N+1
2N due to x ≥ 1

2 + 1
N >

1
2 + 1

2N = N+1
2N , and for even N , xl ≥ 1

2 + 1
N due to x ≥ 1

2 + 1
N = N+2

2N . Thus, it holds that 1
2 + 1

2N ≤ xl ≤
x < xl+1 ≤ xm < y ≤ xm+1 ≤ 1, which along with (27) gives

|eN
1 (x) − eN

1 (y)| = |eN
1 (x) − eN

1 (xl+1)| + |eN
1 (xl+1) − eN

1 (xm)| + |eN
1 (xm) − eN

1 (y)|
≥ √

2π sin
( π

2N

)
(xl+1 − x) + √

2π sin
( π

2N

)
(xm − xl+1)

+ √
2π sin

( π

2N

)
(y − xm)

= √
2π sin

( π

2N

)
|x − y|.

(c) x ∈ A1, y ∈ A2. If x ∈ [ 1
4 + 3

2N , 34 − 3
2N ] ∩ A1, then x, y ∈ [ 1

4 + 3
2N , 34 − 3

2N ], and (25) holds by 

virtue of (b). If x ∈ [ε, 14 + 3
2N ), then eN

1 (x) ≤ √
2 sin

(
( 1

4 + 3
2N )π

)
. Besides, y ∈ A2 :=

(
1
2 − 1

N , 12 + 1
N

)
implies that eN

1 (y) ≥ √
2 sin

(
π
(

1
2 − 2

N

))
> eN

1 (x) for N > 14. Hence,

|eN
1 (x) − eN

1 (y)| ≥ √
2 sin

(
π

(
1

2
− 2

N

))
− √

2 sin

((
1

4
+ 3

2N

)
π

)
= 2

√
2 cos

((
3

8
− 1

4N

)
π

)
sin

((
1

8
− 7

4N

)
π

)
≥ 2

√
2 cos

(
3π

8

)
sin

((
1

8
− 7

4N

)
π

)
|x − y|,

since |x − y| ≤ 1 and N > 14.
(d) x ∈ A2, y ∈ A3. In this case, the proof is similar to (c).

(e) x ∈ A1, y ∈ A3. For x ∈ A1, eN
2 (x) ≥ √

2 min
{

sin(2πε), sin( 2π
N )
}

=: c0 > 0, and eN
2 (y) ≤ −c0. 

Hence,

|eN
2 (x) − eN

2 (y)| ≥ 2c0 ≥ 2c0|x − y|.
The proof is finished. �
The condition N > 14 in Lemma 3.2 is only considered for technical reasons and may be not 

necessary. Anyway, for a proper approximation, the partition parameter N is always required to be 
large enough. Based on Lemma 3.2, we proceed to obtain the optimal Hölder continuity exponent 
of (t, x) �→ v N(t, x) for SGM or FDM. In view of (10) and (12), we write the discrete heat kernel 
associated with FDM or SGM into the following unified formulation

G N
t (x, y) =

N−1∑
k=1

exp(λN
k t)ϕN

k (x)ψN
k (y), (29)

where λN
k = −k2π2, ϕN

k (x) = ek(x), ψN
k (y) = ek(y) for the case of SGM, and λN

k = −4N2 sin2
(

k
2N π

)
, 

ϕN
k (x) = eN

k (x), ψN
k (y) = ek(κN (y)) for the case of FDM.
12
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Proposition 3.3. Let 0 < ε < 1
2 and N > 14. Then there exist positive constants Ci = Ci(N, ε, T0, T ), i = 1, 2, 

such that for any (t, x), (s, y) ∈ [T0, T ] × [ε, 1 − ε],
C1(|t − s| + |x − y|2) ≤E|v N(t, x) − v N(s, y)|2 ≤ C2(|t − s| + |x − y|2). (30)

Proof. The proof is separated into three steps.
Step 1: One can check that the discrete heat kernel (29) associated with SGM or FDM satisfies the 

following two facts:
(i) the sequence {λN

k }k∈ZN ⊂ (−∞, 0] is strictly decreasing with respect to k;
(ii) for every N ≥ 1 and k ∈ZN , functions ϕN

k , ψN
k : [0, 1] →R are uniformly bounded from below 

and above by −√
2 and 

√
2, respectively. Moreover,∣∣∣ϕN

k (x) − ϕN
k (y)

∣∣∣≤ √
2πk|x − y|, ∀ x, y ∈ [0,1].

Then the proof of the right side of (30) is standard by using the above facts (i) and (ii).
Step 2: In this step, we prove the left side of (30) for t = s or x = y.
We first prove the left side of (30) for the case of x = y. Without loss of generality, assume that 

t ≥ s. Notice that

1∫
0

ψN
m (y)ψN

n (y)dy = δm,n, (31)

which leads to

E|v N(t, x) − v N(s, x)|2 =
s∫

0

1∫
0

|G N
t−r(x, z) − G N

s−r(x, z)|2dzdr +
t∫

s

1∫
0

|G N
t−r(x, z)|2dzdr

≥
N−1∑
k=1

t∫
s

e2λN
k (t−r)dr|ϕN

k (x)|2. (32)

Noticing that for any x ∈ [ε, 1 − ε], we have ϕN
1 (x) ≥ ϕN

1 (ε) > 0. This yields that (32) is bounded from 
below as

E|v N(t, x) − v N(s, x)|2 ≥
t∫

s

e2λN
1 (t−r)dr|ϕN

1 (x)|2 ≥ C(ε, T , N)(t − s), (33)

which proves the lower bound in (30) for the case of x = y.
To prove the case of t = s ≥ T0, it is sufficient to notice that

E|v N(t, x) − v N(t, y)|2 =
t∫

0

1∫
0

|G N
t−r(x, z) − G N

t−r(y, z)|2dzdr

=
N−1∑
k=1

t∫
0

e2λN
k (t−r)dr|ϕN

k (x) − ϕN
k (y)|2,

and

|ϕN
1 (x) − ϕN

1 (y)|2 + |ϕN
2 (x) − ϕN

2 (y)|2 ≥ c(ε, N)|x − y|2,
by virtue of Lemma 3.2. It follows that
13
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E|v N(t, x) − v N(t, y)|2 ≥
2∑

k=1

t∫
0

e2λN
k (t−r)dr|ϕN

k (x) − ϕN
k (y)|2

≥ e2λN
2 t − 1

2λN
2

2∑
k=1

|ϕN
k (x) − ϕN

k (y)|2 ≥ c(ε, T0, N)|x − y|2.

Step 3: In Step 1 and Step 2, we have shown that there exist Ki, i = 1, 2, 3, 4 such that for any 
t ∈ [T0, T ],

K1|x − y|2 ≤E|v N(t, x) − v N(t, y)|2 ≤ K2|x − y|2, ∀ x, y ∈ [ε,1 − ε],
and that for any x ∈ [ε, 1 − ε],

K3|t − s| ≤E|v N(t, x) − v N(s, x)|2 ≤ K4|t − s|, ∀ t, s ∈ [T0, T ].
In order to extend the lower bound in (30) to the case of t �= s and x �= y, we consider the following 
two situations.

Case 1: If |x − y|2 ≥ 4K4
K1

|t − s|, then by the inequality (a + b)2 ≥ 1
2 a2 − b2 for a, b ∈R,

E|v N(t, x) − v N(s, y)|2 ≥ 1

2
E|v N(t, x) − v N(t, y)|2 −E|v N(t, y) − v N(s, y)|2

≥ K1

2
|x − y|2 − K4|t − s| ≥ K1

4
|x − y|2

≥ K1

8

(
|x − y|2 + 4K4

K1
|t − s|

)
≥ min

{
K1

8
,

K4

2

}
(|x − y|2 + |t − s|).

Case 2: If K1
4K4

|x − y|2 ≤ |t − s| (assume without loss of generality t > s), then similar to (33), it 
holds for some C = C(ε, T ) > 0 that

E|v N(t, x) − v N(s, y)|2 ≥
t∫

s

1∫
0

|G N
t−r(x, z)|2dzdr ≥ C |t − s|

≥ C

2
(|t − s| + K1

4K4
|x − y|2)

≥ min

{
C

2
,

C K1

8K4

}
(|t − s| + |x − y|2).

The proof is finished. �
Proof of Theorem 2.3. We will apply Proposition 3.1 with I = [T0, T ] to prove Theorem 2.3. By Propo-
sition 3.3 with x = y, v N(·, x) satisfies (C1) of Proposition 3.1 with H = 1

2 . For any fixed x ∈ [ε, 1 − ε],

Var v N(t, x) =
N−1∑
k=1

t∫
0

e2λN
k (t−r)dr|ϕN

k (x)|2, ∀ t > 0.

Thus, Var v N(·, x) is a Lipschitz function with respect to t ∈ [T0, T ], i.e., (18) holds with η = 1 and 
X0(·) = v N(·, x). In order to verify (19), it suffices to show that for t, s ∈ [T0, T ] with t �= s,

E|v N(t, x)|2 E|v N(s, x)|2 −
∣∣∣E[v N(t, x)v N(s, x)]

∣∣∣2 > 0, ∀ x ∈ [ε,1 − ε]. (34)
14
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Indeed, assume without loss of generality t > s. Then (31) and the Hölder inequality imply

∣∣∣E[v N(t, x)v N(s, x)]
∣∣∣2 =

⎛⎝ s∫
0

1∫
0

G N
t−r(x, z)G N

s−r(x, z)dzdr

⎞⎠2

≤
⎛⎝ s∫

0

1∫
0

|G N
t−r(x, z)|2dzdr

⎞⎠⎛⎝ s∫
0

1∫
0

|G N
s−r(x, z)|2dzdr

⎞⎠
<E|v N(t, x)|2 E|v N(s, x)|2,

where in the last step, we have used t > s. This proves that v N (·, x) satisfies (C2) of Proposition 3.1. 
Besides, we notice that for any t ≥ T0/2,

Var v N(t, x) ≥
t∫

0

e2λN
1 (t−r)dr|ϕN

1 (x)|2 ≥ eλN
1 T0 − 1

2λN
1

∣∣∣ϕN
1 (ε)

∣∣∣2 > 0, ∀ x ∈ [ε,1 − ε], (35)

which implies that v N (·, x) satisfies (C0) with δ = T0/2. In conclusion, we have shown that v N (·, x)
satisfies (C0), (C1) and (C2) of Proposition 3.1, which completes the proof of Theorem 2.3. �
3.2. Proof of Theorem 2.4

In this part, let v N (t, x) be the numerical solution of SGM for (3). By (23), we have

Var
(

v N(t, x)|v N(s, y)
)

= Var v N(t, x)Var v N(s, y) − Cov(v N(t, x), v N(s, y))2

Var v N(s, y)
.

Based on (35), we proceed to derive the lower bound of Var
(

v N(t, x)|v N (s, y)
)
.

Proposition 3.4. Let v N(t, x) be the numerical solution of SGM for (3). Then for any 0 < ε < 1
2 , there exists 

N0 := N0(ε) such that for all N ≥ N0 ,

Var v N(t, x)Var v N(t, y) − Cov(v N(t, x), v N(t, y))2 ≥ c(ε, N, T0)|x − y|2
holds for any x, y ∈ [ε, 1 − ε] and t ∈ [T0, T ].

Proof. Without loss of generality, assume that ε ≤ y < x ≤ 1 − ε . Let t ∈ [T0, T ] be arbitrarily fixed. 
First, we claim that for any N ≥ 4,

Var v N(t, x)Var v N(t, y) − Cov(v N(t, x), v N(t, y))2 > 0, ∀ x �= y. (36)

Otherwise, there exist x0 �= y0 (without loss of generality, assume y0 < x0) and λ0 ∈ R such that 
v N(t, x0) = λ0 v N (t, y0) a.s. Hence,

t∫
0

1∫
0

|G N
t−r(x0, z) − λ0G N

t−r(y0, z)|2dzdr

=
N−1∑
k=1

t∫
0

e−2k2π2(t−r)dr|ek(x0) − λ0ek(y0)|2 = 0, (37)

which implies that sin(kπx0) = λ0 sin(kπ y0) for all 1 ≤ k ≤ N − 1. Note that sin(πx) �= 0 for any 
x ∈ [ε, 1 − ε]. Thus, λ0 = sin(πx0)

sin(π y0)
= sin(kπx0)

sin(kπ y0)
provided sin(kπ y0) �= 0. We claim that under (37), 

sin(2π y0) �= 0 and sin(3π y0) �= 0.
15
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In fact, if sin(2π y0) = 0, then sin(2πx0) = 0. This implies x0 = y0 = 1
2 , which contradicts with 

x0 �= y0. If sin(3π y0) = 0, then sin(3πx0) = 0. This implies x0, y0 ∈ { 1
3 , 23 }. Since y0 < x0, it holds that 

y0 = 1
3 and x0 = 2

3 . However, this contradicts with λ0 = sin(πx0)
sin(π y0)

= sin(2πx0)
sin(2π y0)

.
Since sin(2π y0) �= 0 and sin(3π y0) �= 0, we have

λ0 = sin(πx0)

sin(π y0)
= sin(2πx0)

sin(2π y0)
= sin(3πx0)

sin(3π y0)
.

By the elementary identities sin(2πx0) = 2 sin(πx0) cos(πx0) and sin(3πx0) = 3 sin(πx0) −4 sin3(πx0), 
it must hold that cos(πx0) = cos(π y0) and sin2(πx0) = sin2(π y0). However, this only occurs when 
x0 = y0 since x0, y0 ∈ (0, 1), and hence (37) does not hold. Thus, we obtain (36).

By denoting

ak =
⎛⎝ t∫

0

e−2k2π2(t−r)dr

⎞⎠
1
2

ek(x), bk =
⎛⎝ t∫

0

e−2k2π2(t−r)dr

⎞⎠
1
2

ek(y),

we rewrite

Var v N(t, x)Var v N(t, y) − Cov(v N(t, x), v N(t, y))2

=
(

N−1∑
i=1

a2
i

)⎛⎝N−1∑
j=1

b2
j

⎞⎠−
∣∣∣∣∣

N−1∑
i=1

aibi

∣∣∣∣∣
2

=
∑
i< j

|aib j − a jbi|2. (38)

By definitions of ak and bk , we have

|aib j − a jbi |2 = 1

4
K N

i, j(t)|ei(x)e j(y) − e j(x)ei(y)|2,
where

K N
i, j(t) := (e−2π2 i2t − 1)(e−2π2 j2t − 1)

π4i2 j2
.

Obviously, 0 < K N
i, j(T0) ≤ K N

i, j(t) ≤ K N
i, j(T ) < ∞, ∀ t ∈ [T0, T ]. Notice that

sin(iπx) sin( jπ y) − sin(iπ y) sin( jπx)

= sin
(i + j)π(x − y)

2
sin

( j − i)π(x + y)

2
− sin

(i + j)π(x + y)

2
sin

( j − i)π(x − y)

2
. (39)

Choose N0 := N0(ε) > 2 such that (2N0 − 3) sin(πε) ≥ π
2 + 1 and let N ≥ N0 be arbitrarily fixed. For 

any y ∈ [ε, 1 − ε], denote yε
N := y + 1

2N−3 . By (38), we have

Var v N(t, x)Var v N(t, y) − Cov(v N(t, x), v N(t, y))2

≥ |aN−2bN−1 − aN−1bN−2|2

≥ K N
N−2,N−1(T0)

∣∣∣∣sin
(2N − 3)π(x − y)

2
sin

π(x + y)

2
−sin

(2N − 3)π(x + y)

2
sin

π(x − y)

2

∣∣∣∣2.
We are going to derive the lower bound of Var v N(t, x)Var v N (t, y) − Cov(v N (t, x), v N (t, y))2, which is 
separated into two cases.

Case 1: y ∈ [ε, 1 − ε) and x ∈ (y, yε
N ] ∩ (ε, 1 − ε]. We introduce

f N(x, y) : = sin
(2N − 3)π(x − y)

sin
π(x + y) − sin

(2N − 3)π(x + y)
sin

π(x − y)
2 2 2 2

16



C. Chen, J. Hong and D. Sheng Journal of Complexity 70 (2022) 101634
≥ sin
(2N − 3)π(x − y)

2
sin(πε) − sin

π(x − y)

2

≥ (2N − 3)(x − y) sin(πε) − π

2
(x − y),

where we have used 0 < x − y ≤ 1
2N−3 , and 2

π z ≤ sin(z) ≤ z, ∀ z ∈ (0, π2 ]. Hence, for any N ≥ N0 with 
(2N0 − 3) sin(πε) − π

2 ≥ 1,

f N(x, y) ≥ (x − y),

which implies that

Var v N(t, x)Var v N(t, y) − Cov(v N(t, x), v N(t, y))2 ≥ c(T0, N, ε)|x − y|2. (40)

Case 2: y ∈ [ε, 1 − ε) and x ∈ (yε
N , 1 − ε]. By (36) and the continuity of Var v N(t, x) and 

Cov(v N (t, x), v N(t, y)), we have that there is c = c(ε, N) such that

Var v N(t, x)Var v N(t, y) − Cov(v N(t, x), v N(t, y))2 ≥ c ≥ c

(1 − 2ε)2
|x − y|2. (41)

Combining (40) and (41), we finish the proof. �
Proof of Theorem 2.4. The proof of (16) is similar to that of Theorem 2.3. To prove (15), we set 
I = [ε, 1 − ε]. Similar as in (35), for any x ∈ Iδ with δ = ε

2 , we have

Var v N(t, x) ≥
t∫

0

e−2π2(t−r)dr|√2 sin(πx)|2 ≥ 1 − e−2π2 T0

π2 sin2
(
π

ε

2

)
> 0,

where t ∈ [T0, T ]. This implies that v N (t, ·) satisfies (C0) with δ = ε
2 . Propositions 3.3 and 3.4 show 

that v N (t, ·) satisfies (C1) and (C2)′ of Proposition 3.1, which completes the proof of (15). �
3.3. Proof of Theorem 2.5

Recall that the numerical solution v M of EEM for (3) is defined in (13). We begin with giving the 
optimal Hölder continuity of v M(ti, ·).

Lemma 3.5. Let 0 < ε < 1
2 be fixed and M ≥ 3. Then there exist positive constants C j = C j(ε, M, T0, T ), j =

1, 2, such that for any ti ∈ [T0, T ],

C1|x − y|2 ≤E|v M(ti, x) − v M(ti, y)|2 ≤ C2|x − y|2, ∀ x, y ∈ [ε,1 − ε].

Proof. First, it follows from (4), the orthogonality of {e j}∞j=1, and the mean value theorem that

E|v M(ti, x) − v M(ti, y)|2 =
ti∫

0

1∫
0

|Gti−[ r
δt ]δt(x, z) − Gti−[ r

δt ]δt(y, z)|2dzdr

=
i−1∑
j=0

δt
∞∑

k=1

e−2k2π2(ti−t j)|ek(x) − ek(y)|2

≤
i∑

j=1

δt
∞∑

k=1

e−2k2π2t j 2k2π2|x − y|2.
17
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Since the function x �→ xe−x is monotone increasing on [0, 1] and monotone decreasing on [1, ∞), 
and f (1) = e−1, we have

∞∑
k=1

e−2k2π2δt2k2π2δt ≤
∑

k≤ 1√
2π2δt

−1

e−2k2π2δt2k2π2δt + e−1 +
∑

k> 1√
2π2δt

e−2k2π2δt2k2π2δt

≤

1√
2π2δt∫
0

e−2x2π2δt2x2π2δtdx +
∞∫

1√
2π2δt

e−2x2π2δt2x2π2δtdx + e−1.

By the change of variables z = xπ
√

δt ,

∞∫
0

e−2x2π2δt2x2π2δtdx = 1

π
√

δt

∞∫
0

e−2z2
2z2dz ≤ C√

δt
,

where C := 1
π

∫∞
0 e−2z2

2z2dz < ∞. Therefore, for any ti ∈ [0, T ]

E|v M(ti, x) − v M(ti, y)|2 ≤
i∑

j=1

δt
∞∑

k=1

e−2k2π2δt2k2π2|x − y|2 ≤ T

δt

(
C√
δt

+ e−1
)

|x − y|2.

On the other hand, by the spectral expansion of G and Lemma 3.2,

E|v M(ti, x) − v M(ti, y)|2 =
ti∫

0

1∫
0

∣∣∣Gti−[ r
δt ]δt(x, z) − Gti−[ r

δt ]δt(y, z)
∣∣∣2 dzdr

≥
2∑

k=1

ti∫
0

e−2k2π2(ti−[ r
δt ]δt)dr|ek(x) − ek(y)|2

≥ c(ε, T0, T )|x − y|2.
The proof is completed. �
Proof of Theorem 2.5. We will apply Proposition 3.1 with I = [ε, 1 − ε] and δ = ε

2 to prove Theo-
rem 2.5. For any x ∈ Iδ = [ ε

2 , 1 − ε
2 ], ti ∈ [T0, T ],

Var v M(ti, x) =
∞∑

k=1

ti∫
0

e−2π2k2(ti−[ r
δt ]δt)dr|ek(x)|2 ≥ c sin2

(πε

2

)
, (42)

with c = 2 
∫ T0

0 e−2π2 T dr > 0. This means that v M(t, ·) satisfies (C0) of Proposition 3.1 with δ = ε
2 .

By introducing

ak =
⎛⎝ t∫

0

e−2k2π2(t−[ r
δt ]δt)dr

⎞⎠
1
2

ek(x), bk =
⎛⎝ t∫

0

e−2k2π2(t−[ r
δt ]δt)dr

⎞⎠
1
2

ek(y), k ∈N+

and

K N
i, j(t) :=

⎛⎝ t∫
e−2i2π2(t−[ r

δt ]δt)dr

⎞⎠⎛⎝ t∫
e−2 j2π2(t−[ r

δt ]δt)dr

⎞⎠ , i, j ∈N+,
0 0

18
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and repeating the proof of Proposition 3.4, one can verify that

Var v M(ti, x)Var v M(ti, y)−Cov(v M(ti, x), v M(ti, y))2 ≥ c(T0, ε)|x− y|2, ∀ x, y ∈ [ε,1−ε],
which implies the condition (C2)′ of Proposition 3.1. In addition, Lemma 3.5 shows that v M(t, ·)
satisfies (C1) of Proposition 3.1. The proof is completed by applying Proposition 3.1. �
4. Discussion on continuous versions of time discretizations

In this section, we consider the comparison of the continuous version of time discretization for 
the system of linear stochastic parabolic equations (2) and that of the system of linear stochastic 
differential equations. It turns out that the continuous EEM numerical solution U M (t, x) is smoother in 
every subinterval (ti, ti+1) than in grid points, which leads to the nonexistence of the lower bound of 
the Hölder exponent, while the continuous EEM numerical solution of the system of finite dimensional 
Ornstein–Uhlenbeck equations preserves the optimal Hölder exponent and the critical dimension of 
the exact solution.

4.1. Continuous version of time discretization in infinite dimensional case

Interpolation is usually used to extend the numerical solution from grid points to the whole inter-
val. By (13), it is natural to define the continuous EEM numerical solution by

v M(t, x) =
t∫

0

1∫
0

Gt−[ r
δt ]δt(x, z)W (dr,dz). (43)

In the same way, we obtain the continuous EEM numerical solution U M (t, x) of system (2). We first 
study the Hölder continuity of v M(t, x) in time direction, which is crucial to the analysis of hitting 
probabilities of U M(·, x).

Lemma 4.1. Let v M given by (13) be the numerical solution of EEM for (3). Then there exist positive constants 
Ci = Ci(T0, T , ε), i = 1, 2, such that for any 0 < t j < ti ≤ T ,

C1
√

ti − t j ≤E|v M(ti, x) − v M(t j, x)|2 ≤ C2
√

ti − t j, (44)

where x ∈ [ε, 1 − ε].

Proof. In view of (13) and t j < ti , we have

E|v M(ti, x) − v M(t j, x)|2

=
t j∫

0

1∫
0

|Gti−[ r
δt ]δt(x, z) − Gt j−[ r

δt ]δt(x, z)|2dzdr +
ti∫

t j

1∫
0

|Gti−[ r
δt ]δt(x, z)|2dzdr. (45)

Thus, to prove the lower bound of (44), it suffices to prove that there is C1 > 0 such that

i−1∑
k= j

tk+1∫
tk

1∫
0

∣∣Gti−tk (x, z)
∣∣2 dzdr ≥ C1

√
ti − t j . (46)

In fact, by the elementary property 
∫ 1

0 |Gr(x, z)|2 dz = G2r(x, x) and Lemma 2.1,
19
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i−1∑
k= j

tk+1∫
tk

1∫
0

∣∣Gti−tk (x, z)
∣∣2 dzdr =

i−1∑
k= j

tk+1∫
tk

G2(ti−tk)(x, x)dr

≥ C
i−1∑
k= j

δt√
ti − tk

≥ C
i− j∑
k=1

δt√
kδt

≥
ti− j+1∫
t1

C√
r

dr

= C
(√

ti− j+1 − √
t1
)
.

For j = i − 1, 
√

ti− j+1 − √
t1 = (

√
2 − 1)

√
ti − t j , and for 1 ≤ j < i − 1, 

√
ti− j+1 − √

t1 ≥ 1
2

√
ti − t j . 

Thus, we obtain (46), which yields the left side of (44). Similarly, using (5) gives

i−1∑
k= j

tk+1∫
tk

1∫
0

∣∣Gti−tk (x, z)
∣∣2 dzdr ≤

i−1∑
k= j

tk+1∫
tk

P2(ti−tk)(x, x)dr

≤ C

ti− j∫
0

1√
r

dr = 2C
√

ti − t j.

For the right side of (44), it remains to estimate the first term on the right side of (45). By (4),

t j∫
0

1∫
0

|Gti−[ r
δt ]δt(x, z) − Gt j−[ r

δt ]δt(x, z)|2dzdr

=
j−1∑

m=0

tm+1∫
tm

∞∑
k=1

|e−k2π2(ti−tm) − e−k2π2(t j−tm)|2drek(x)2

≤
j−1∑

m=0

tm+1∫
tm

∞∑
k=1

|e−k2π2(ti−r) − e−k2π2(t j−r)|2drek(x)2

=
t j∫

0

1∫
0

|Gti−r(x, z) − Gt j−r(x, z)|2dzdr

≤C |ti − t j| 1
2 ,

where in the last step, we have applied [21, Lemma A1.1 (b)]. The proof is completed. �
The following corollary indicates that 1

4 is the Hölder exponent of v M(·, x) but is not the optimal 
Hölder exponent.

Lemma 4.2. Let the condition of Lemma 4.1 hold and fix x ∈ [ε, 1 −ε]. Then there exists some positive constant 
c3 = c3(T0, T ) such that for any T0 ≤ s < t ≤ T ,

E|v M(t, x) − v M(s, x)|2 ≤ c3
√

t − s. (47)

However, for any H ∈ (0, 12 ), there is no c4 > 0 such that for any T0 ≤ s < t ≤ T ,

E|v M(t, x) − v M(s, x)|2 ≥ c4|t − s|2H . (48)
20
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Proof. Notice that

E|v M(t, x) − v M(s, x)|2

=
s∫

0

1∫
0

|Gt−[ r
δt ]δt(x, z) − Gs−[ r

δt ]δt(x, z)|2dzdr +
t∫

s

1∫
0

|Gt−[ r
δt ]δt(x, z)|2dzdr

=: A(s, t) + B(s, t).

Since 0 < s < t ≤ T , there is j ≤ i + 1 such that t ∈ [ti, ti+1) and s ∈ [t j−1, t j).
If i = j − 1, then ti ≤ s < t ≤ ti+1. Similar to the first term on the right side of (45), we also have 

A(s, t) ≤ C
√

t − s, which together with the fact B(s, t) ≤ C t−s√
t−ti

≤ C
√

t − s completes the proof of 
(47).

If i ≥ j, then by Lemma 4.1,

E|v M(t, x) − v M(s, x)|2
≤ 3E|v M(t, x) − v M(ti, x)|2 + 3E|v M(ti, x) − v M(t j, x)|2 + 3E|v M(t j, x) − v M(s, x)|2
≤ C

√
t − ti + c1

√
ti − t j + C

√
t j − s ≤ (2C + c1)

√
t − s.

Assume by contradiction that there is c4 > 0 such that (48) holds. Fix t ∈ [ti + δt
2 , ti+1) and let 

sn = t − 1
n with positive integers n > 4

δt , which ensures that t > sn ≥ ti + δt
2 − 1

n > ti + δt
4 . By virtue of 

(4) and the uniform boundedness of {ek}k≥1, it holds that

A(sn, t) =
sn∫

0

1∫
0

|Gt−[ r
δt ]δt(x, z) − Gsn−[ r

δt ]δt(x, z)|2dzdr

≤2

sn∫
0

∞∑
k=1

|e−k2π2(t−[ r
δt ]δt) − e−k2π2(sn−[ r

δt ]δt)|2dr

≤2

sn∫
0

∞∑
k=1

e−2k2π2(sn−[ r
δt ]δt)|e−k2π2(t−sn) − 1|2dr.

Since for r ∈ [0, sn], sn − [ r
δt ]δt ≥ sn − ti > δt

4 , and 1 − e−x ≤ x for all x > 0, we have

A(sn, t) ≤2

sn∫
0

∞∑
k=1

e−k2π2 δt
2 k4π4(t − sn)

2dr ≤ C(T , δt)|t − sn|2,

which indicates that limn→∞ A(sn,t)
|t−sn |2H = 0 for any 0 < H < 1.

On the other hand, by (5) and the semigroup property of G ,

B(sn, t) =
t∫

sn

1∫
0

∣∣Gt−ti (x, z)
∣∣2 dzdr ≤ (t − sn)P2(t−ti)(x, x) = t − sn√

8π(t − ti)
.

Taking into account t − ti ≥ δt
2 , we obtain that limn→∞ B(sn,t)

|t−sn |2H = 0 for any 0 < H < 1
2 . In conclusion, 

we have lim E|v M (t,x)−v M (sn,x)|2
|t−s |2H = 0, for H ∈ (0, 12 ), which contradicts (48). The proof is finished. �
n→∞ n
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By (47), we obtain the upper bound for hitting probabilities of U M (·, x), i.e., for any x ∈ [ε, 1 − ε],
P {U M([T0, T ] × {x}) ∩ A �= ∅} ≤ CHd−4(A).

However, the nonexistence of the lower bound of the Hölder exponent in Lemma 4.2 prevents us from 
deriving the lower bound of hitting probabilities in time direction of U M(t, x) in terms of Bessel–Riesz 
capacity. This implies that the regularity of trajectories of U M (·, x) is different from that of the exact 
solution u(·, x). However, for a system of finite dimensional Ornstein–Uhlenbeck equations, the result 
is different.

4.2. Continuous version of time discretization in finite dimensional case

Let {B(t) = (B0(t), B1(t), . . . , Bd(t)), t ≥ 0} be a standard (d + 1)-dimensional Brownian motion on 
(�, F , {Ft}t≥0, P ), and Y (t) = (Y 1(t), . . . , Y d(t)) be the solution of the following system

dY i(t) = −λY i(t)dt + dBi(t), t > 0, i = 1, . . . ,d, (49)

where λ > 0 and Y i(0) = 0. Obviously, each component Y i(t) is an independent copy of a 1-
dimensional Ornstein–Uhlenbeck process {Y 0(t), t ≥ 0} which satisfies

dY 0(t) = −λY 0(t)dt + dB0(t), t > 0, (50)

and Y 0(0) = 0. Making use of Proposition 3.1, it is easy to verify that for any bounded Borel set A in 
Rd ,

C1 Capd−2(A) ≤ P {Y ([T0, T ]) ∩ A �= ∅} ≤ C2Hd−2(A)

with C1, C2 being positive constants depending on T0, T , d, λ.
When we apply EEM to discretize (50) and use the same continuous approach as in (43), the 

associated numerical solution is

Ȳ 0(t) =
t∫

0

e−λ(t−[ r
δt ]δt)dB0(r), t ≥ 0.

Analogous estimates yield that

C1 Capd−2(A) ≤ P
{

Ȳ ([T0, T ]) ∩ A �= ∅}≤ C2Hd−2(A)

for any bounded Borel set A in Rd , where Ȳ is the continuous exponential Euler approximation of Y . 
It can be concluded that the continuous EEM numerical solution Ȳ = {Ȳ (t), t ∈ [T0, T ]} for system (49)
preserves the critical dimension of the exact solution Y = {Y (t), t ∈ [T0, T ]}, which is different from 
the infinite dimensional case. In fact, this property not only holds for the continuous EEM numerical 
solution, but also holds for the Euler–Maruyama method under a proper continuity approach. The 
Euler–Maruyama method applied to (50) yields

Y 0
i = Y 0

i−1 − λδtY 0
i−1 + �B0

i−1, i ∈N+,

where �B0
i = B0(ti+1) − B0(ti). After rearranging, we have

Y 0
i =

i−1∑
k=0

(1 − λδt)i−1−k�B0
k =

ti∫
0

(1 − λδt)[
ti−r
δt ]dB0(r), i ∈N+.

Naturally, we define the continuous Euler–Maruyama numerical solution for (50) by

Ỹ 0(t) =
t∫
(1 − λδt)[

t−r
δt ]dB0(r), t ≥ 0. (51)
0
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Proposition 4.3. Fix L > 0, δt ∈ (0, 1
λ
). Let Ỹ (t) = (Ỹ 1(t), . . . , ̃Y d(t)) be the continuous Euler–Maruyama 

numerical solution for system (49). Then there exist positive constants Ci = Ci(T0, T , d, λ), i = 1, 2, such that 
for any Borel set A ⊂ [−L, L]d,

C1 Capd−2(A) ≤ P
{

Ỹ ([T0, T ]) ∩ A �= ∅}≤ C2Hd−2(A).

The proof of Proposition 4.3 can be found in Appendix A.3. In general, the hitting probabilities 
of continuous versions of numerical solutions depend on continuity approaches. If we consider the 
linear interpolation of the Euler–Maruyama numerical solution {Y 0

i , i ∈N+},

Ỹ 0(t) = ti − t

δt
Y 0

i−1 + t − ti−1

δt
Y 0

i , t ∈ (ti−1, ti), i ∈N+,

then it can be verified that for some C > 0,

E|Ỹ 0(t) − Ỹ 0(s)|2 ≤ C(t − s), ∀ T ≥ t > s ≥ T0.

However, we cannot obtain the existence of c > 0 such that

E|Ỹ 0(t) − Ỹ 0(s)|2 ≥ c(t − s), ∀ T ≥ t > s ≥ T0. (52)

Actually, for any tm < s < t < tm+1,

E|Ỹ 0(t) − Ỹ 0(s)|2 = (t − s)2

(δt)2
E|Ỹ 0(ti+1) − Ỹ 0(ti)|2 ≤ C(δt, T , λ)(t − s)2,

which contradicts with the lower bound in (52). Therefore, the linear interpolation may not be a 
proper choice to inherit the critical dimension of the exact solution.
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Appendix A

A.1. Proof of Lemma 2.1

Using (6), we have Gt(x, x) ≥ (1 − 2e− ε2
t )Pt(x, x) = 1√

4πt
(1 − 2e− ε2

t ), which gives that

Gt(x, x) ≥ 1√
4πt

(1 − 2e− ε2
t ) ≥ 1

2
√

4πt
, ∀ x ∈ [ε,1 − ε], t ∈ (0, cε ],

where cε := min{ ε2

log 4 , T }. It follows from (4) that Gt(x, x) ≥ 2e−π2 T sin2(πε) =: c, ∀ (t, x) ∈ [cε, T ] ×
[ε, 1 − ε], which indicates

Gt(x, x) ≥ c ≥ c√
t

√
cε, ∀ (t, x) ∈ [cε, T ] × [ε,1 − ε].

The proof is completed by choosing C = min{c
√

cε, 1√ }.

2 4π
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A.2. Proof of Proposition 3.1

The proof of Proposition 3.1 is divided into two steps.
Step 1: We prove that (C0), (C1) and (C2) implies (20), which is mainly based on [1, Theorem 2.1].
In view of [1, Theorem 2.1], it suffices to prove that (C2) implies the following lower bound:

Var (X0(x)|X0(y)) ≥ c4

m∑
j=1

∣∣x j − y j
∣∣2H j , ∀ x, y ∈ I. (A.1)

From (21), (C0) and (22), we obtain that for any x, y ∈ I

Var(X0(x)|X0(y))

≥

(
E|X0(x) − X0(y)|2 −

(√
E|X0(x)|2 −√E|X0(y)|2

)2
)(

4c1 −E|X0(x) − X0(y)|2)
4c7

. (A.2)

We introduce the set

I1 :=
{
(x, y) ∈ I × I :

m∑
j=1

∣∣x j − y j
∣∣2H j <

3c1

c3
, and max

1≤ j≤m
|x j − y j|2H jη <

2c1c2

c2
4m

}
and I2 := I × I − I1, and divide the proof of (A.1) into two cases.

Case 1: (x, y) ∈ I1.
By the upper bound of (C1), we obtain that for (x, y) ∈ I1,

4c1 −E|X0(x) − X0(y)|2 ≥ 4c1 − c3

m∑
j=1

∣∣x j − y j
∣∣2H j ≥ c1. (A.3)

Making use of (18) leads to∣∣∣∣√E|X0(x)|2 −
√
E|X0(y)|2

∣∣∣∣= |E|X0(x)|2 −E|X0(y)|2|√
E|X0(x)|2 +√E|X0(y)|2 ≤ c4

2
√

c1

m∑
j=1

∣∣x j − y j
∣∣H j(1+η)

.

(A.4)

Substituting (A.3) and (A.4) into (A.2) gives

Var(X0(x)|X0(y)) ≥
c1

(
E|X0(x) − X0(y)|2 − c2

4
4c1

∣∣∣∑m
j=1

∣∣x j − y j
∣∣H j(1+η)

∣∣∣2)
4c7

≥
c1

(
c2
∑m

j=1

∣∣x j − y j
∣∣2H j − c2

4m
4c1

∑m
j=1

∣∣x j − y j
∣∣2H j(1+η)

)
4c7

,

thanks to the lower bound of (C1) and the Hölder inequality. Then an elementary calculation by using 
max1≤ j≤m |x j − y j |2H jη ≤ 2c2c1

c2
4m

implies

Var(X0(x)|X0(y)) ≥ c1c2

8c7

m∑
j=1

∣∣x j − y j
∣∣2H j .

Case 2: (x, y) ∈ I2.

In this case, it holds that 
∑m

j=1

∣∣x j − y j
∣∣2H j ≥ min

{
3c1
c3

, ( 2c1c2
c2

4m
)

1
η

}
=: c9. Making use of the identity 

(23) and the Hölder inequality, we see that
24
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Var(X0(x)|X0(y)) ≥ 0, ∀ x, y ∈ I.

Taking (19) into account, it holds that for x �= y,

Corr(X0(x), X0(y))

√
E|X0(x)|2

√
E|X0(y)|2 =Cov(X0(x), X0(y)) <

√
E|X0(x)|2

√
E|X0(y)|2,

which in combination with (23) indicates that Var(X0(x)|X0(y)) > 0 for x �= y. Noticing that (x, y) �→
Var(X0(x)|X0(y)) is a continuous function on the bounded closed set I2, we deduce that

Var(X0(x)|X0(y)) ≥ c10, ∀ (x, y) ∈ I2,

for some c10 > 0. By the boundedness of I , we conclude

Var(X0(x)|X0(y)) ≥ c10

max
x,y∈I

∑m
j=1

∣∣x j − y j
∣∣2H j

m∑
j=1

∣∣x j − y j
∣∣2H j

≥ c11

m∑
j=1

∣∣x j − y j
∣∣2H j , ∀ (x, y) ∈ I2,

which completes the proof of (A.1) for Case 2.
Step 2: We prove the implication (C0), (C1) and (C2)′ ⇒ (20), which is similar to that of [24, 

Theorem 5.10 and Theorem 5.11] (see also [9, Theorems 2.1 and 2.6]). We present a sketch proof here 
for the completeness.

Similar to [24, Theorem 5.10] or [9, Theorem 2.6], for the upper bound of (20), we need to verify
(i) infx∈K E|X0(x)|2 > 0, for any compact subset K ⊂ Iδ with some δ > 0.
(ii) For any ε > 0 small enough,

E

⎡⎢⎢⎣∫
Rε

j

∫
Rε

j

exp

(‖X(x) − X(y)‖
‖x − y‖

)
dydx

⎤⎥⎥⎦≤ Cε2m,

where Rε
j =∏m

l=1[ jlε, ( jl + 1)ε), j = ( j1, . . . , jm) ∈Zm , and Rε
j ∩ I �= ∅ (see [9, Theorems 2.6]).

Property (i) follows from (C0). Now we are devoted to the proof of property (ii). By the upper 
bound in (C1) with H = (1, . . . , 1), it holds for i = 1, . . . , d,

|Xi(x) − Xi(y)|
‖x − y‖ ≤ √

c3
|Xi(x) − Xi(y)|√
E|Xi(x) − Xi(y)|2 .

Let �x,y be the covariance matrix of the Gaussian random vector X(x) − X(y), i.e.,

�x,y = diag
(
E|X1(x) − X1(y)|2, . . . ,E|Xd(x) − Xd(y)|2

)
,

because Xi, i ∈ {1, . . . , d} are mutually independent. The law of the random vector Z := �
− 1

2
x,y [X(x) −

X(y)] is the normal distribution N (0, Id). As a result,

E

⎡⎢⎢⎣∫
Rε

j

∫
Rε

j

exp

(‖X(x) − X(y)‖
‖x − y‖

)
dydx

⎤⎥⎥⎦≤
∫
Rε

j

∫
Rε

j

E
[

e
√

c3‖Z‖]dydx ≤ Cε2m,

which proves property (ii).
Similar to [24, Theorem 5.11] or [9, Theorem 2.1], for the lower bound of (20), we need to verify
(iii) For any x ∈ I , the density function z �→ p X(x)(z) of X(x) is continuous and bounded. Moreover, 

p X(x)(z) > 0 for any z on a compact set of Rd;
25
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(iv) For any x, y ∈ I with x �= y, the density px,y of the law of (X(x), X(y)) exists and satisfies: for 
any fixed M1 > 0, there exist γ , α > 0 such that 2

α (γ − m) = d − Q with Q = m, and

px,y(z, ζ ) ≤ C

‖x − y‖γ
exp

(
− c‖z − ζ‖2

‖x − y‖α

)
,

for any z, ζ ∈ [−M1, M1]d , where C , c are positive constants independent of x, y.
Let �x be the covariance matrix of the Gaussian random vector X(x), i.e.,

�x = diag
(
E|X1(x)|2, . . . ,E|Xd(x)|2

)
= diag

(
E|X0(x)|2, . . . ,E|X0(x)|2

)
.

It follows from (C0) that �x is positive definite, which together with the fact that X(x) is Gaussian 
with mean zero and covariance matrix �x , indicates property (iii).

It remains to show property (iv). For x, y ∈ I , denote σxy := Cov(X0(x), X0(y)). Since (X0(x), X0(y))

has a Gaussian distribution with the covariance matrix

�x,y :=
[

σxx σxy

σyx σyy

]
,

by [14, Proposition 3.13], the conditional distribution of X0(x) given X0(y) = ζ0 is

N
(
σxyσ

−1
yy ζ0, γxy

)
, with γxy := σxx − σxyσ

−1
yy σxy . (A.5)

By (23) and (C2)′ , we have that for x �= y,

γxy = Var (X0(x)|X0(y)) ≥ c4‖x − y‖2 > 0. (A.6)

Define the bilinear function on R ×R by

(a,b)∗ = aγ −1
xy b, ∀ a,b ∈R.

Then the symmetry and positivity of γ −1
xy ensure that (· , · )∗ is an inner product on R, and the 

norm induced by which is denoted by | · |∗ . Applying the elementary inequality −|a − b|2∗ ≤ − 1
2 |a|2∗ +

|b|2∗, ∀ a, b ∈R2, it follows from (A.5) that

qx|y (z0|ζ0) = 1√
2πγxy

exp

(
−1

2

∣∣z0 − σxyσ
−1
yy ζ0

∣∣2∗
)

≤ 1√
2πγxy

exp

(
−1

4
|z0 − ζ0|2∗ + 1

2

∣∣(1 − σxyσ
−1
yy )ζ0

∣∣2∗
)

, (A.7)

where qx|y(·|ζ0) is the density of N (σxyσ
−1
yy ζ0, γxy), i.e., qx|y(·|ζ0) is the conditional density of X0(x)

given X0(y) = ζ0. Using (A.6),∣∣(1 − σxyσ
−1
yy )ζ0

∣∣2∗ ≤ c−1
4 ‖x − y‖−2

∣∣(1 − σxyσ
−1
yy )ζ0

∣∣2 .

Furthermore, by (C0), for any ζ0 ∈ [−M1, M1],∣∣(1 − σxyσ
−1
yy )ζ0

∣∣2 = ∣∣σ−1
yy (σxy − σyy)ζ0

∣∣2 ≤ c−2
1 M2

1

∣∣σxy − σyy
∣∣2 .

Taking (C1) and (21) into account, we have∣∣σxy − σyy
∣∣2 =

∣∣∣E[X0(x)X0(y)] −E|X0(y)|2
∣∣∣2

≤E|X0(x) − X0(y)|2 E|X0(y)|2 ≤ c3c7‖x − y‖2,

and thus 
∣∣(1 − σxyσ

−1
yy )ζ0

∣∣2 ≤ C .
∗

26



C. Chen, J. Hong and D. Sheng Journal of Complexity 70 (2022) 101634
In view of (C1), (21), and the Hölder inequality,

0 ≤ E|X0(x) − X0(y)|2 −
(√

E|X0(x)|2 −
√
E|X0(y)|2

)2

≤ c3‖x − y‖2,

0 ≤
(√

E|X0(x)|2 +
√
E|X0(y)|2

)2

−E|X0(x) − X0(y)|2 ≤ 4c7,

which along with (22) and (C0) give

γxy = Var (X0(x)|X0(y)) ≤ 4c3c7‖x − y‖2

4c1
= c3c7‖x − y‖2

c1
.

Thus, it holds that |z0 − ζ0|2∗ ≥ c1
c3c7

‖x − y‖−2|z0 − ζ0|2 ≥ C‖x − y‖−2|z0 − ζ0|2.
Gathering the above estimates together leads to

qx|y (z0|ζ0) ≤ 1√
2πc4‖x − y‖ exp

(
− C |z0 − ζ0|2

4‖x − y‖2
+ 1

2
C

)
≤ C

‖x − y‖ exp

(
−C

|z0 − ζ0|2
‖x − y‖2

)
,

for any z0, ζ0 ∈ [−M1, M1]2. Let qX0(y) be the density of X0(y). Similar to property (iii), qX0(y)(ζ0) is 
uniformly bounded for all y ∈ I and ζ0 ∈ [−M1, M1] since by (C1), x �→E|X0(x)|2 is continuous on I . 
Hence, we have that the density qx,y of (X0(x), X0(y)) satisfies for all (z0, ζ0) ∈ [−M1, M1]2,

qx,y(z0, ζ0) = qX0(y)(ζ0)qx|y (z0|ζ0) ≤ C

‖x − y‖ exp

(
−C

|z0 − ζ0|2
‖x − y‖2

)
. (A.8)

Since Xi i = 1, . . . , d, are independent copies of X0, it follows from (A.8) that the density px,y of

(X(x), X(y)) = (X1(x), . . . , Xd(x), X1(y), . . . , Xd(y))

satisfies for any z = (z1, . . . , zd) and ζ = (ζ1, . . . , ζd) in [−M1, M1]d ,

px,y(z, ζ ) =
d∏

i=1

qx,y(zi, ζi) ≤ C

‖x − y‖d
exp

(
−C

d∑
i=1

|zi − ζi|2
‖x − y‖2

)

= C

‖x − y‖d
exp

(
−C

‖z − ζ‖2

‖x − y‖2

)
,

which proves property (iv) with γ = d and α = 2.

A.3. Proof of Proposition 4.3

By (51), Itô’s isometry gives

E|Ỹ 0(t)|2 =
t∫

0

(1 − λδt)2[ t−r
δt ]dr ≥

T0
2∫

0

(1 − λδt)2[ T +T0/2
δt ]dr > 0, ∀ t ∈ [ T0

2
, T + T0

2

]
,

and for s < t ,

E|Ỹ 0(t) − Ỹ 0(s)|2 =
t∫

s

(1 − λδt)2[ t−r
δt ]dr +

s∫
0

|(1 − λδt)[
t−r
δt ] − (1 − λδt)[

s−r
δt ]|2dr.

Since 1 − λδt ∈ (0, 1), we have that for any T0 ≤ s < t ≤ T ,
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(1 − λδt)2[ T −T0
δt ](t − s) ≤

t∫
s

(1 − λδt)2[ t−r
δt ]dr ≤ (t − s)

and

s∫
0

|(1 − λδt)[
t−r
δt ] − (1 − λδt)[

s−r
δt ]|2dr ≤

s∫
0

(1 − λδt)2[ s−r
δt ] − (1 − λδt)2[ t−r

δt ]dr

≤
s∫

0

1 − (1 − λδt)2[ t−r
δt ]−2[ s−r

δt ]dr =: J . (A.9)

The estimation of J is divided into two cases.
Case 1: t − s ≥ δt .
It holds that [ t−r

δt ] − [ s−r
δt ] ≤ t−r

δt − s−r
δt + 1 ≤ 2 t−s

δt , ∀ r ∈ (0, s). This implies that

J ≤
s∫

0

1 − (1 − λδt)
4(t−s)

δt dr = s

4(t−s)
δt∫

0

− d

da
(1 − λδt)ada

= s

4(t−s)
δt∫

0

(1 − λδt)a log
1

1 − λδt
da ≤ s log

1

1 − λδt

4(t − s)

δt
≤ C(δt, T , λ)(t − s).

Case 2: 0 < t − s < δt .
Note that s ∈ [tm, tm+1) for some 0 ≤ m < T /δt . Then

J =
s∫

t−δt

+
t−δt∫

s−δt

+
s−δt∫

t−2δt

+· · · +
t−mδt∫

s−mδt

+
s−mδt∫

max{0,t−(m+1)δt}

+
max{0,t−(m+1)δt}∫

0

1 − (1 − λδt)2[ t−r
δt ]−2[ s−r

δt ]dr.

Notice that for i ∈ {0, 1, . . . , m}, we have [ t−r
δt ] = [ s−r

δt ] = i, ∀ r ∈ (t − (i + 1)δt, s − iδt). Therefore,

J =
m∑

i=1

t−iδt∫
s−iδt

+
max{0,t−(m+1)δt}∫

0

1 − (1 − λδt)2[ t−r
δt ]−2[ s−r

δt ]dr

≤ (m + 1)(t − s) ≤
(

T

δt
+ 1

)
(t − s),

where t − (m + 1)δt < t − s is used. Combining Case 1 and Case 2 yields J ≤ C(T , δt, λ)(t − s).
Similar to the proof of (34), we also have for t �= s,

E|Ỹ0(t)|2 E|Ỹ0(s)|2 − |E[Ỹ0(t)Ỹ0(s)]|2 > 0.

In order to apply Proposition 3.1, it suffices to prove that t �→ E|Ỹ 0(t)|2 is Hölder continuous with 
exponent H0 > 1/2. Indeed, it follows immediately from the above estimates on (A.9) that
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∣∣∣E|Ỹ 0(t)|2 −E|Ỹ 0(s)|2
∣∣∣=
∣∣∣∣∣∣

t∫
s

(1 − λδt)2[ t−r
δt ]dr −

s∫
0

(1 − λδt)2[ s−r
δt ] − (1 − λδt)2[ t−r

δt ]dr

∣∣∣∣∣∣
≤ (t − s) + J

≤ C(T , δt, λ)(t − s).

Finally, we complete the proof by applying Proposition 3.1 with I = [T0, T ] and δ = T0/2. �
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